Analysis of the thermodynamic performance of transcritical CO2 power cycle configurations for low grade waste heat recovery
Wolf V., Bertrand A., Leyer S.
Energy Reports, vol. 8, pp. 4196-4208, 2022
Organic Rankine cycles employing carbon dioxide (CO2) for waste heat recovery became popular in the last years thanks to its excellent heat transfer characteristics and small environmental footprint. Low-grade waste heat (<240 °C) represents the major portion of excess heat globally, but it is hard to recover due to the small temperature gap of heat source and heat sink leading to a poor efficiency of the Rankine cycle. Therefore, numerous modifications of the power cycle layout were proposed by academia and industry — reheated expansion, recuperation and intercooled compression among them. This work compares ten cycle architectures for a defined waste heat source (60–100 °C) and heat sink (20 °C). Firstly, CO2 cycle architectures from literature are examined with its original operational parameters. Secondly, the predefined low-grade heat source is implemented into the cycle. The cycles are assessed regarding efficiency, mass flow and pressure. Results show that for source temperatures higher than 80 °C, recuperation and reheated expansion enhance the cycle performance whereas intercooled compression negatively affects the efficiency. The conventional configuration operated most efficiently for temperatures until 80 °C. A road map of thermodynamic efficiencies of CO2 cycle architectures for low-grade waste heat recovery up to 100 °C is delivered.
doi:10.1016/j.egyr.2022.03.040