Monitoring of Spatio-Temporal Variations of Oil Slicks via the Collocation of Multi-Source Satellite Images
La T.V., Pelich R.M., Li Y., Matgen P., Chini M.
Remote Sensing, vol. 16, n° 16, art. no. 3110, 2024
Monitoring oil drift by integrating multi-source satellite imagery has been a relatively underexplored practice due to the limited time-sampling of datasets. However, this limitation has been mitigated by the emergence of new satellite constellations equipped with both Synthetic Aperture Radar (SAR) and optical sensors. In this manuscript, we take advantage of multi-temporal and multi-source satellite imagery, incorporating SAR (Sentinel-1 and ICEYE-X) and optical data (Sentinel-2/3 and Landsat-8/9), to provide insights into the spatio-temporal variations of oil spills. We also analyze the impact of met–ocean conditions on oil drift, focusing on two specific scenarios: marine floating oil slicks off the coast of Qatar and oil spills resulting from a shipwreck off the coast of Mauritius. By overlaying oils detected from various sources, we observe their short-term and long-term evolution. Our analysis highlights the finding that changes in oil structure and size are influenced by strong surface winds, while surface currents predominantly affect the spread of oil spills. Moreover, to detect oil slicks across different datasets, we propose an innovative unsupervised algorithm that combines a Bayesian approach used to detect oil and look-alike objects with an oil contours approach distinguishing oil from look-alikes. This algorithm can be applied to both SAR and optical data, and the results demonstrate its ability to accurately identify oil slicks, even in the presence of oil look-alikes and under varying met–ocean conditions.