Influence of Bioceramic Cements on the Quality of Obturation of the Immature Tooth: An In Vitro Microscopic and Tomographic Study
Al-Rayesse R., Al-Jabban O., Eid A., Kabtoleh A., Addiego F., Mancino D., Haikel Y., Kharouf N.
Bioengineering, vol. 11, n° 3, art. no. 213, 2024
The present in vitro study focuses on the filling ability of three different bioceramic cements with or without the addition of a bioceramic sealer in an open apex model on the marginal apical adaptation, tubule infiltrations, and void distributions as well as the interface between the cement and the sealer materials. To this end, sixty mandibular premolars were used. MTA-Biorep (BR), Biodentine (BD), and Well-Root Putty (WR) were used to obturate the open apex model with or without the addition of a bioceramic sealer, namely TotalFill® BC sealer™ (TF). A digital optical microscope and scanning electron microscope (SEM) were used to investigate the cement–dentin interface, marginal apical adaptation, and the material infiltration into the dentinal tubules. Micro-computed X-ray tomography and digital optical microscopy were used to investigate the cement–sealer interface. The results were analyzed by using the Kruskal–Wallis test. No significant difference was found between the groups for the marginal apical adaptation quality (p > 0.05). Good adaptation of the dentin–cement interface was found for all tested groups and the sealer was placed between the cement material and dentinal walls. All the groups demonstrated some infiltrations into the dentinal tubules at the coronal part except for the BR group. A good internal interface was found between the cement and the sealer with the presence of voids at the external interface. A larger number of voids were found in the case of the BD-TF group compared to each of the other two groups (p < 0.05). Within the limitations of the present in vitro study, all the groups demonstrated good marginal apical adaptation. The use of a sealer in an open apex does not guarantee good filling and, in addition, creates voids at the external interfaces with the dental walls when the premixed sealer is used with powder–liquid cement systems. The use of a premixed bioceramic cement could offer fewer complications than when a powder–liquid cement system is used.
doi:10.3390/bioengineering11030213