Al-POWERED FUTURE ENERGY SYSTEMS

Sustainable Energy Systems (SES) Group
Intelligent Clean Energy Systems (ICES) unit
Luxembourg Institute of Science and Technology (LIST)

Dr Jun Cao

April 29th 2022

UUUUUUUUUU
IIIIIIIIIIIIIIIIII
NNNNNNNNNNNNN



Outline

How deep
Energy transition — reinforcement learning

Challenge is making decision in the Future challenge

future power systems
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Real-time operation from seconds to minutes



Energy
Transition

 Big data-Huge
amount of data
volume.
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Data volume (1 year)

Collection | 1/day 1/h 1/30min 1/15min
frequency

Records 365 m 8.75 Billon 17.52 Billion 35 Billion
Volume 1.82TB 730 TB 1460 TB 2920 TB

O Data variety

AMI’s data recording frequency increases from once a month
to one reading every 15 minutes to one hour.

Micro-PMU hundreds (512) of samples per cycle at 50/60 Hz

How to utilize the big energy datasets




Energy Transition: User centric

User behavior Demand Response

Peer to peer market trading

EV charging behavior

Model and learn the user behaviour
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Artificial Intelligence — Deep Learning

Simple Neural Network

Deep Learning Neural Network

@ Input Layer () Hidden Layer @ Output Layer

Machine Learning
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Input Feature extraction Classification

Deep Learning
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Input Feature extraction + Classification Qutput

¢ Big data
e Computational power

®* Open-source ecosystem

T O

TensorFlow Py Torch

Al is driving innovation across businesses of every size and scale




Applications of AI/ML In Energy

Market
Forecasting

° Energy trading, Deep
Electric Load / Short- reinforcementlearning
Term / Long-Term

Anomaly Detection

System Monitoring
Outliers//data attacks

¢ State Estimation &
Visualization

Power System Controls Network Topology an_d
Deep reinforcement — Parameter Identification
learning Transformer-to.-c.ustomer,
Phase connectivity,
Impedance estimation

Equipment Monitoring Customer Behavior Analysis
Predictive Maintenance ® Customer segmentation,
Online Diagnosis

nonintrusive load monitoring,
demand response




Reinforcement Learning in a nutshell

Supervised learning

Labeled Data
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Real-time decision making for complex process



Reinforcement Learning in a nutshell

* Reinforcement Learning(RL): Problems involving an agent interacting with an
environment to learn how to take actions in order to maximize reward
(optimal policy).

Agent
State: S Action: a;
Reward R;

Next state S;; 4

Environment



Deep reinforcement learning in Battery Energy Arbitrage

« Overall goal: Design a optimal control strategy to maximise the profit of battery owner
participating in the wholesale energy market.

ENERGY SELLING *

Wholesale
market
SURPLUS

ENERGY
Reduced level of
energy purchase

Level of Solar

Agent
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Source: http://css.umich.edu/factsheets/us-grid-enerqy-storage-factsheet



http://css.umich.edu/factsheets/us-grid-energy-storage-factsheet

Battery environment
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Battery degradation

Input: History SoC profile

Example SoC Profile
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Bolun Xu et.al, “Modeling of lithium-ion battery degradation for cell life assessment,” IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1131-1140, 2018.




State and Observation

A state s is a complete description of the state of the world.
An observation o is a partial description of a state, which may omit information.

] Battery state of charge SoCit: Battery’s current charging situation

O Prices from wholesale market: historical prices, prediction

StES

State space



Reward and action

The goal of the agent is to maximize some notion Battery charging/discharging:

of cumulative reward over a trajectory.
 Discrete:
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Deep Q Network (DQN)

Prediction

Full connect

Input: last week ~ Monday
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Jun Cao, Zhong Fan, “Deep Reinforcement Learning-Based Energy Storage Arbitrage With Accurate Lithium-lon Battery Degradation Model”, IEEE Tran. on Smart Grid, vol. 11, no. 5, pp. 4513-4521, Sept. 2020.



Results

Spring Summer
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Automatic Peer to Peer trading
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Multi-Agent Deep
Reinforcement Learning

Cephas Samende, Jun Cao, Multi-Agent
Deep Deterministic Policy Gradient
Algorithm for Peer-to-Peer Energy Trading
Considering Distribution Network
Constraints, Applied energy, in press, 2022.



Future direction



Trustworthy Al

Explainable Transparency

Diversity,

Technical Robustness and A .
non-discrimination and fairness

Safety



« Data availability

» Data quality

1S THENEW O”_' » Data privacy

 Data market

Data in Digital Energy
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