

The energy transition results in a power electronics dominated power system

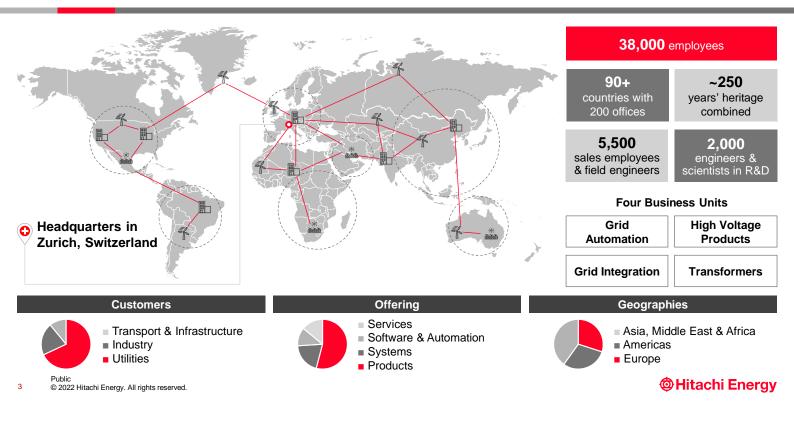
LISTALKS on energy transition, Wednesday 23rd February 2022

Jan R Svensson, Hitachi Energy Research

2022-02-23

© 2022 Hitachi Energy. All rights reserved.

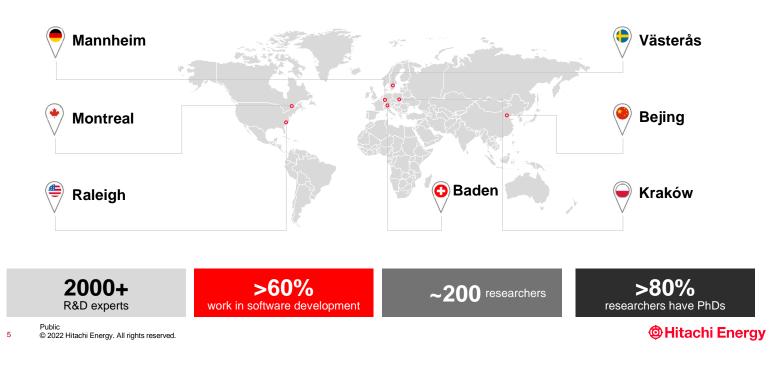
OHITACHI Energy



Content

- 1. Hitachi Energy
- 2. Power system evolution and energy transition
- 3. Example 1: Mitigate low inertia (SVC Light Enhanced)
- 4. Example 2: DC transmission (HVDC Light)
- 5. Future view of power electronics across the total power system
- 6. Summary

About Hitachi Energy


Global technology and market leader

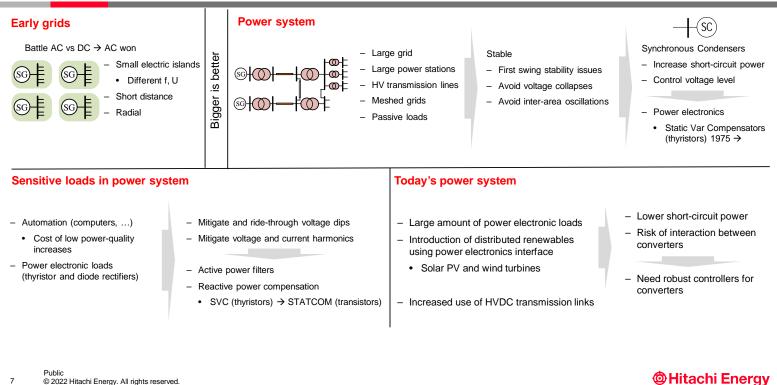
HITACHI Inspire the Next

Grid Automation	Grid Integration	High Voltage Products	Transformers
50% of the top 250 global electric utilities supported by our leading portfolio	Technology HVDC leader in power quality and grid connection solutions and services	1 in every 4 high-voltage switchgear installed in the world	World's largest installed base of power, distribution, traction transformers
~\$4 trillion mission-critical infrastructure assets managed with our software solutions	Leader in HVDC* systems with 200 GW installed	More than 1M circuit- breakers installed in the world	Technology leader in transformer applications for HVDC, renewables and digitalization
			Land and the Constant of the

Maintaining and modernizing the **world's largest** installed base More than **200** service centers and **1,500** field engineers worldwide

Services

Our R&D team is present in 20+ countries and we have Research Centers in seven countries



Power system evolution and energy transition

OHitachi Energy

Power system evolution with focus on power electronics

HITACHI Inspire the Next

© 2022 Hitachi Energy. All rights reserved.

Mega-trends affecting power system

Focus on grid-connected power electronics

Climate change

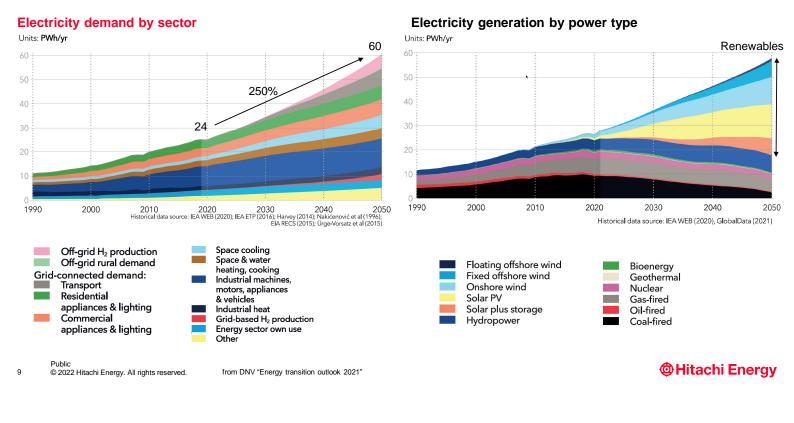
- Need to reduce CO2 emissions → Energy transition
- Political will to close down traditional power plants
- Increase of renewables in both distribution and transmission grids

Automatization and digitalization

- · As economies digitize, the cost of nonperformance of electrical system is increasing (>70% of problems occur in distribution part)
- · Number of data centers will continue to increase

Urbanization

- More than half of the world's population lives in cities today (2030: 60%; 2050: 70%)
- Number of mega cities (>5 million) increases
- How will the future power system for mega cities develop?
- Compact and invisible power distribution

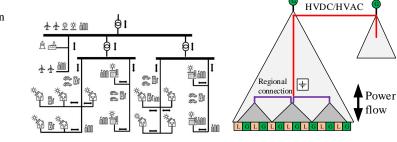

Fossil-free transportation

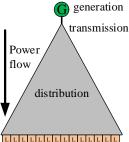
- Biofuels will preserve today's infrastructure
- A complete shift to electric vehicles will set tough demands on infrastructure
 - Batteries (slow and fast chargers affect distribution system)
- Electrified highways (catenaries, electric tracks on road, inductive charging)

Electrification

Electricity consumption growing at twice the rate of overall energy (mainly in emerging countries)

HITACHI


Change in grid structure


Old grid structure

- Uni-directional power flow
- Passive loads
- Loads consuming energy

- · Bi-directional power flow
- Passive and active loads that consume/generate/store energy
- · Renewables (distribution and in utility scale)
- More distribution and regional grids w/ regional interconnections
- Energy/power balancing: ESS together with long transmissions, demand response, renewable curtailment and flexible power stations
- Moving loads
- Add intelligence

OHitachi Energy

HITACHI

Example 1: Mitigate low inertia (SVC Light Enhanced)

Public 11 © 2022 Hitachi Energy. All rights reserved.

Future power grid challenge

Power system inertia

European inertia 2030 scenario

Traditional value: 5 to 6 s

 Green 	H ≥ 4 s	Very good contribution
 Yellow 	3 s ≤ H < 4 s	Good contribution
 Orange 	2 s ≤ H < 3 s	Marginal contribution
 Red 	H < 2 s	Limited contribution

Public 12 © 2022 Hitachi Energy. All rights reserved. Source: ENTSOe "Ten year network development plan TYNDP2016"

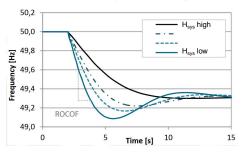
Hitachi Energy

HITACHI

Inspire the Next

OHITACHI Energy

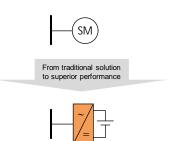
Problem?


- When closing down traditional power plants using large synchronous generators grid stability issues can occur
- Lower inertia
- Lower short-circuit power
- Power system fault resulting in reduced generated power (power plant or line)

- Power imbalance results in reduced frequency
- At too low frequency, loads and generations are disconnected from power system

Frequency variations

· Low inertia results in quicker frequency variations



By adding inertia, stability can be increased

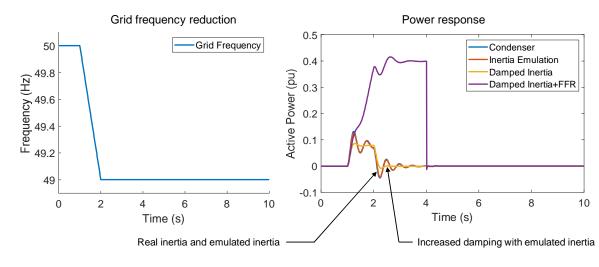
 Synchronous Condenser with rotating mass is a traditional solution

Grid forming

 Enhanced STATCOM with small energy storage and with overload capability utilizing an advanced controller can increase performance

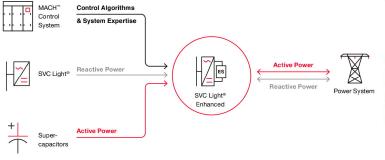
 A proposal from ENTSOe is that almost all grid connected generators must behave like a synchronous generator (inertia and overload capability)

Public 13 © 2022 Hitachi Energy. All rights reserved.


Hitachi Energy

HITACHI

Inspire the Next


Frequency support performance

- Converter with storage can provide similar inertia and damping as synchronous machines
- Converter with storage can provide better performance than synchronous machines:
- Adjust damping factor based on grid strength and operation point
- Very high inertia constant
- Combination of fast frequency response and inertia response

Concept of an Enhanced STATCOM

Multiple services for future grid stability

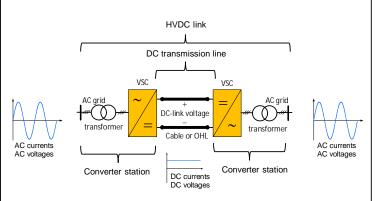
	$+$ \mathbb{Z}	-sc	
Grid-stabilizing services	Traditional STATCOM	Synchronous condenser	SVC Light [®] Enhanced
Voltage regulation		••	•••
Inertia		••	
Short-circuit contribution		•••	••
Flexibility/modularity			
Controllability		•	

Public 15 © 2022 Hitachi Energy. All rights reserved.

Hitachi Energy

Example 2: DC transmission (HVDC Light)

OHitachi Energy


HVDC History

- The commercial breakthrough came 1954 in Sweden:
 20MW, 100kV cable link from mainland to island of Gotland using mercury-arc valves
- In 1970s thyristors were introduced for HVDC
- In 1997 self-commutated converters using IGBTs were launched for HVDC

Laying the Gotland cable in 1954

Public 17 © 2022 Hitachi Energy. All rights reserved.

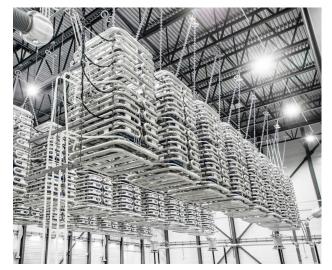
Why so high voltage?

- Need high DC voltage to reduce current \rightarrow reduce DC-line losses Why DC?
- No AC \rightarrow Transmit power for a long distance with OHL & cables
- Decoupling of AC systems

HVDC Light

VSC HVDC

- Research project 1994
- Hällsjön 3 MW R&D demo 1997
- Gotland 50 MW Pilot 1999
- ...

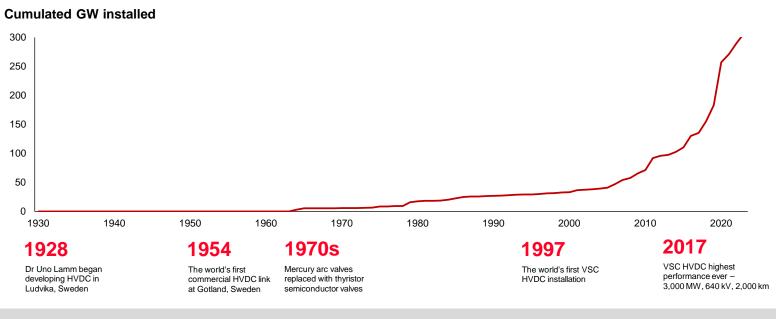


Gotland

HVDC Light® Up to ±640 kV & 3500 MW*

Hitachi Energy

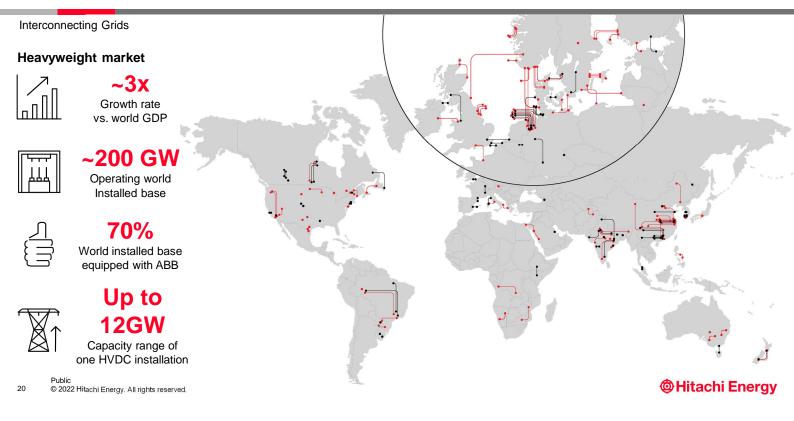
HITACHI Inspire the Next



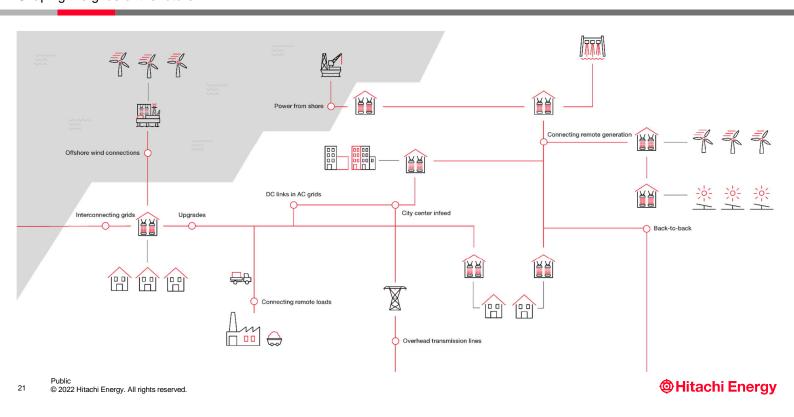
Valve hall of HVDC Light

The North Sea Link (NSL) interconnector between Norway and UK: 1,400 MW, ±525 kV, 730 km

Hitachi Energy


Exponential growth has been driven by Technical developments and Grid transformation needs

```
Public
19 © 2022 Hitachi Energy. All rights reserved.
```


Hitachi Energy

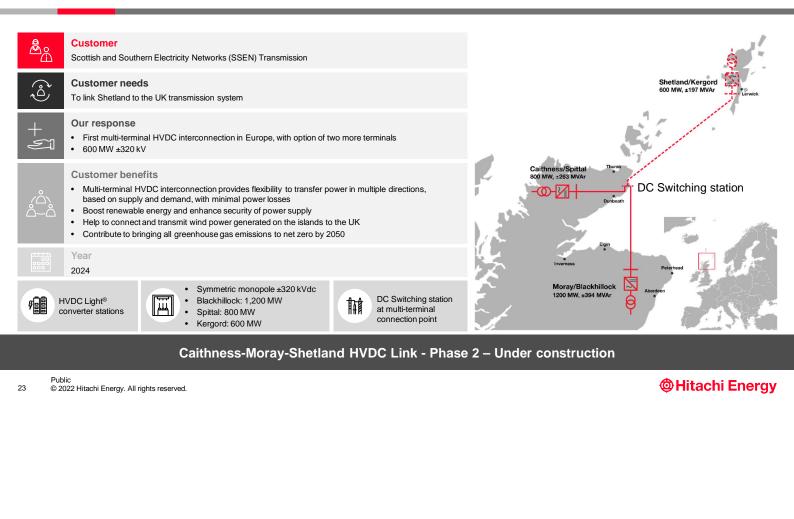
HVDC becoming mainstream in all corners of the world

HITACHI Inspire the Next

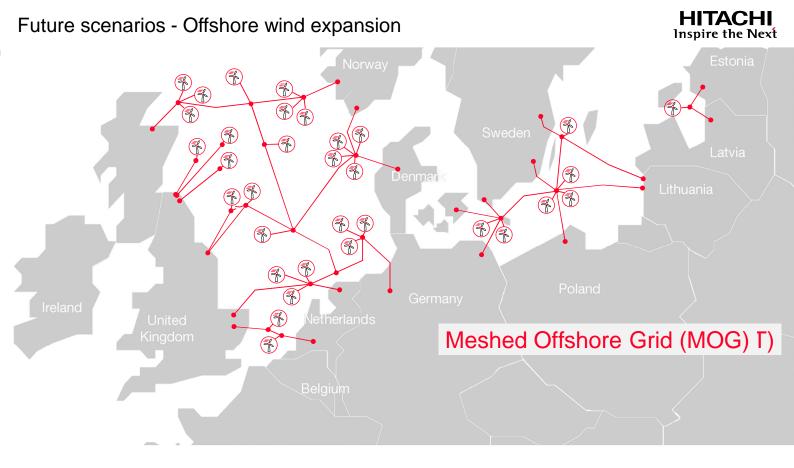
HVDC applications Shaping the grids of the future

The first regional DC Grid in Europe

Customer **₽** ♥\ Scottish Hydro Electric Transmission Ltd (SHETL) Customer needs Strengthening power network Our response Two HVDC Light[®] converter stations, 1,200 MW and 800 MW • Submarine and underground cable transmission of nearly 160 kilometers s/Spittal **Customer benefits** Enable integration of renewable energy Increased network stability Year 2018 Moray/Blackhillock 1200 MW, ±394 MVAr Symmetric monopole ±320 kVdc HVDC Light[®] converter stations Land and sea DC cable 勈 冒險 المنشل Blackhillock: 1,200 MW system Spittal: 800 MW Caithness-Moray-Shetland HVDC Link - Phase 1 - In operation

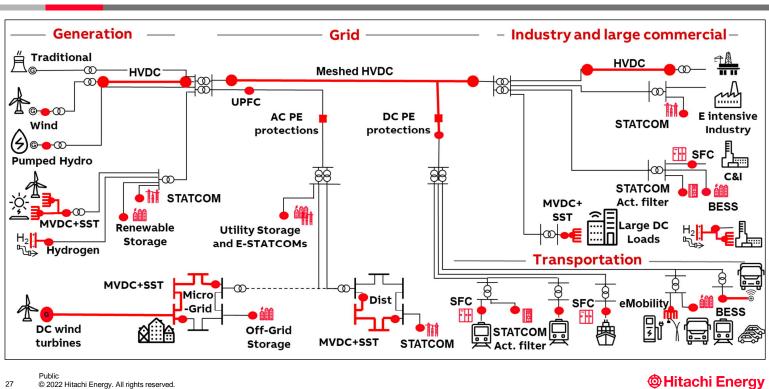

Public 22 © 2022 Hitachi Energy. All rights reserved.

Hitachi Energy


HITACHI

The first regional DC Grid in Europe

HITACHI Inspire the Next



HITACHI Inspire the Next

Future view of power electronics across the total power system

OHitachi Energy

27 © 2022 Hitachi Energy. All rights reserved.

Summary

Energy transition is ongoing

Increased electricity consumption → Increased electricity production

Grid structure changes

· From top-down towards an advanced inter-connected grid with active loads/generations

Power electronic examples in power system that supports energy transition:

- · SVC Light Enhanced: STATCOM with energy storage that also provides inertia
- · HVDC Light: Interconnect power systems, generations and loads
- · Hitachi Energy is advancing the world's energy system to be more sustainable, flexible and secure

HITACH

Inspire the Next

TAC

HITACHI Inspire the Next