NCC-L

Dr. Vincent Berthé Senior research and technology associate LIST, NCC-L - Polymer Processing vincent.berthe@list.lu

LIST AT A GLANCE

RESEARCH & TECHNOLOGY ORGANIZATION (RTO)

APPLYING RESEARCH WHERE RESEARCH IS NEEDED

POSITIONING LUXEMBOUR

TRANSFERRING NEW TECHNOLOGIES TO INDUSTRY

> ACCELERATING THE DEVELOPMENT OF NEW TECHNOLOGIES

STRENGTHENING THE NATIONAL RESEARCH AND INNOVATION COMMUNITY PROVIDING EXPERTISE
TO NATIONAL POLICY MAKERS

LIST's main figures

- A budget of approximately EUR 64 million*
- . Contract research: EUR 10.5 million*
- Competitive research: EUR 14.5 million*
- 630 employees, ¾ of whom are researchers
- About 70 PhD students
- · Nearly forty different nationalities represented
- 350 scientific publications referenced
- · A portfolio of 50 patent families

The expertise of LIST's researchers is deployed in close to 300 research projects, 30% of which are conducted within European programmes.

* 2015 Objectives of the Performance Contract signed with the Luxembourg State for 2015-2017

LIST'S MISSION & POSITIONING

SUPPORTING INDUSTRY INNOVATION

3. Experimental

validation in laboratory

5. validation in 6.

10. Production

Technology Readiness Level (TRLs)

MATERIAL R&D IN LUXEMBOURG

EU, LUX & LIST STRATEGY

Advanced Materials are one of 6 Key Enabling Technologies (KETs) "70% of product-innovation is based on new / improved properties **materials**"

Source Luxinnovation

- Historic & largest industry sector in Luxembourg
 composites, glass industry, sensors, metallurgy
- Key in Luxembourg's diversification strategy and driver of competitiveness
- Impact on various sectors
- _ automotive, space, building, engineering, electronics ...

R&D IN LUXEMBOURG

MATERIALS R&T DEPARTMENT

MAIN FIELDS OF R&D ACTIVITIES

MATERIALS R&T DEPARTMENT

SUSMAT UNIT - KEY ACTIVITIES

- Chemical synthesis
- Polymer chemistry
- Interface engineering
- Compatibilization
- Polymer and (nano)Composite Processing
- Bio-based polymers

Aerospace

Automotive

- Multiscale and multifield modeling
- Molecular modelling
- Damage and failure

Functionality and Durability

- Damage- and ageingtolerant composites
- Sustainability
- Barrier function
- Adhesion

Material Suppliers

Energy& Industry

FROM LAB SCALE TO COMPOUNDING

"Blending/reaction toolbox" in the melt → From g to > 500 kg

Lab vessel Internal mixer (solvent free) (30-300 mL) Lab vessel Micro-compounder Roll milll Extruders (solvent reactions) (10 mL)(500 mL) (1 - > 500 kg)1→ 500 kg 1 g 1-100 g 7-100 g 30-300 g 100 - 800 g Leistritz ZSE 18 MAXX

FROM LAB SCALE TO COMPOUNDING

3 Co-rotating twin screws (450°C)

3 Internal mixers

Roll mill external mixer

Injection molding

2 presses (50t, 450°C)

2 Micro compounders

FROM LAB SCALE TO COMPOUNDING

Others:

- Side-additive-liquid gravimetric feeders
- Cooling belt bath

FROM LAB SCALE TO COMPOUNDING

Potential projects:

- Blending
- Compounding
- Masterbacth
- New polymer matrices (e.g. TPE, composites, additive manufacturing ...)
- Recycling
- Reactive extrusion
 - Compatibilization
 - Grafting: PP/MSA, PP/Peroxide, PE/Silane ...
 - Polymerization: TPU, POM, PA 6/66, PS, PET ...

Services to the industry:

- Process optimization
 - Screw profile
 - Conditions (output, T, P, E)
- Scale-up

FROM LAB SCALE TO COMPOUNDING

Tandem extrusion:

- More fundamental approach
- Great flexibility in terms of conditions (shearing, output, T, P, E)
- More than 100 L/D max
- → great potential for blending, reactive blending or synthesis

TANDEM DESIGN

(everywhere on the profile)

- 11-15 barrels (~reactors)
- Composition (I/s)
- Pressure / atmosphere
- Temperature

ADDITIVE MANUFACTURING

Additive manufacturing equipment ("3D printers"): 3 FDM (Fused Deposition Modeling), 1 SLS (Selective Laser Sintering)

ADDITIVE MANUFACTURING

FDM (Fused Deposition Modeling)

	A4
Max build envelope*	295x195x200mm
Nozzles	2 (3 opt.)
Max nozzle T	350°C / 450°C**
Max heated bed T	135°C
Max Heated chamber	75°C
Max speed	150 mm/sec
Removable plates	yes
Mechanical accuracy XY	0,011 mm
Printable polymers	Any available**
Elastomer printing	Yes (opt.)
Minimum layer thickness	0,05 mm
Nozzle sizes	0,3 / 0,4 / 0,6 / 0,8

ABS, PCABS, PC, PS, PETG, PA+CF, ASA, PA+GF. TPU, TPE, PPS....

ADDITIVE MANUFACTURING

FDM (Fused Deposition Modeling)

Model Capabilities	Apium P155
Print Volume (w, d, h)	140 x 135 x 148 mm
x/y Resolution	Product Resolution: 0.5 mm
	Machine Resolution: 0.0125 mm
z Resolution	Product Resolution: 0.1 mm
	Machine Resolution: 0.05 mm
Reproducibility	0.1 mm
Minimum Layer Thickness	0.1 mm
Maximum Layer Thickness	0.3 mm
Number of Extruders	1
Nozzle Diameter	0.4 mm
Filament Diameter	1.75 mm
Print Head	Easy interchangeable nozzle
	Full metal hot end with heating up to 520°
	Advanced heating and cooling control
	Optimized melt flow
Print Bed	Heated up to 160 °C
Size (w, d, h)	570 x 570 x 665 mm

PEEK, POM, PEI

ADDITIVE MANUFACTURING

FDM (Fused Deposition Modeling)

Technical Specifications:

model: Core 303

Print Volume: 300x300x295 mm

x/y Resolution : Product Resolution :0,4mm

Machine Resolution: 0,02mm

z Resolution: Product Resolution: 0,1mm

Machine Resolution: 0,005mm
Minimun Layer Thickness: 0,1mm
Maximum Layer Thickness: 0,3mm

Number of Extruder: 1(direct drive)

Nozzle Diameter : 0,4mm Filament Diameter : 1,75mm

Print Head : full metal hot end
Print Bed: heated up to 190° C

PEEK, POM, PEI with high loads of fillers

ADDITIVE MANUFACTURING

SLS (Selective Laser Sintering)

Laser Power 14 wat CO2

laser spot dimension 0,3 mm (effective 0,2) temperature range up to 190 C° degrees

laser speed range up to 64,000 pps - <3.500 mm sec

control teperature build room thermocouple-IRsensor

deviation temperature build room about +-5°

scan spacing 100 mm x 100 mm x 100 mm

scan precision X Y

layer Z

print spead in Z

tank powder

minimum powder required

100 micron

from 50 micron

up to 30 mm hour

from 200 gr to 1,5 Kg

250-300 grams

For PA matrices mainly ...

POLYMER PROCESSING TEAM

Pr. Daniel Schmidt

B.S. in Materials Sc. & Eng.

B.S. in Chemistry

Dr. Roberto Quintana *BSc & MSc Chemical Eng.*

Dr. Vincent BerthéBSc & MSc Chemistry
MBA

Expertise and interests:

- Thermoset chemistry
- Ceramics and semiconductors from molecular precursors
- Materials characterization
- Sustainability

Expertise and interests:

- Melt polymerization
- Reactive extrusion
- Extrusion in-situ monitoring
- In-situ nanocomposite synthesis, tandem extrusion
- Surface functionalization

Expertise and interests:

- Polymer formulation
- Polymer for structural composites
- Additive manufacturing
- Compatibilization (highly different viscosities)
- Reactive extrusion

COMPOSITE PROCESSING

OVERVIEW

IR Welding machine

Reception: March 2018

US NDT immersion tank

Reception: March 2018

Robotized stamping press

Reception: June 2018

RTM & Infusion injection unit + Cure monitoring

Reception: March 2018

Laser assisted ATL & winding

Reception: Nov. 2018

420°C Oven(3,5m³)

Reception: March 2018

CHARACTERIZATION

SOME CUTTING-EDGE EQUIPMENT...

Solid state and liquid state multinuclear NMR (600 MHz)

Advanced rheometer

μWT machine: RXsolutions Easytom

AFM machine: Asylum Infinity

Reception: January 2018

Reception: Mars 2018

MATERIALS CHARACTERIZATION & TESTING

SUPPORT FOR THE INDUSTRY

Elemental and isotopic analysis Molecular analysis Structure, morphology and topography Mechanical testing and accelerated ageing Fire testing

MATERIALS CHARACTERIZATION & TESTING

SUPPORT FOR THE INDUSTRY

"Characterization toolbox" for imaging → From micro to nano

MATERIALS CHARACTERIZATION & TESTING

FLAME RETARDANCY

The use of complementary techniques:

- Cone calorimeter coupled to FTIR
- Micro-Calorimeter (PCFC)
- Smoke chamber coupled to FTIR
- Flammability chamber (UL94)

They allow the determination of:

- Heat release rate, time to ignition ...
- Heat capacity, heat release rate
- Smoke opacity and toxicity
- Extinguishing or flame spread (V_{0, 1, 2})

LIST's analytical capabilities and expertise have already proven useful to the packaging, building, automotive, transport and plastics industries

POLYMER SYNTHESIS ACTIVITIES

MAIN EQUIPMENT

Use of complementary tools:

- Full sets of chemistry lab benches
- 500 m² dedicated to organic and polymer synthesis
- 2 glove boxes (N₂ and Ar)
- 1 polycondensation reactor (100g)
- 1 synthesis reactor (up to 5L) ...

POLYMER SYNTHESIS ACTIVITIES

MAIN COMPETENCES

Polymerizations:

- Polycondensation
- Anionic polymerization
- Cationic polymerization
- Radical polymerization
- ...

Types of polymers prepared:

- Polyesters
- Epoxy
- Benzoxazine
- Polyurethane
- Rubbers and elastomers
- Ionic liquid polymers
- ...

LIFE CYCLE SUSTAINABILITY AND RISK ASSESSMENT

OUR MAIN OBJECTIVE, EXPERTISE FIELDS AND FEATURES

Main objective:

Develop Sustainability assessment methods and tools adapted to each decision-making context

In-house expertise fields:

- ✓ Circular Economy approaches (ex: eco-design, recycling, industrial symbiosis)
- ✓ Life-Cycle Assessment (LCA): attributional, consequential, Input/Output, hybrid
- √ Eco-system services
- ✓ Mathematical optimisation
- ✓ MFA (Material Flow Analysis)
- ✓ Uncertainties calculations for LCA
- ✓ REACH helpdesk for Luxembourg
- ✓ Toxicology and eco-toxicology (3D lab models)
- ✓ Life-Cycle Costing (LCC)

Features of our R&D activities:

Coupling LCA with other expertise fields (e.g. MFA, GIS data, risk assessment...) to refine modellings and improve the quality of input data.

LIFE CYCLE SUSTAINABILITY AND RISK ASSESSMENT

INDUSTRIAL AND INSTITUTIONAL PARTNERS

Thanks for your attention

LIST - MRT Department

Catalyzes the translation of smart materials towards industrial innovation

Dr. Vincent Berthé
Senior research and technology associate
LIST, NCC-L Polymer Processing
vincent.berthe @list.lu